(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)

Rewrite Strategy: INNERMOST

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
revapp(Cons(x, xs), rest) →+ revapp(xs, Cons(x, rest))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [rest / Cons(x, rest)].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)

Types:
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
revapp

(8) Obligation:

Innermost TRS:
Rules:
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)

Types:
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))

The following defined symbols remain to be analysed:
revapp

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
revapp(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

Induction Base:
revapp(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(b)) →RΩ(1)
gen_Cons:Nil3_0(b)

Induction Step:
revapp(gen_Cons:Nil3_0(+(n5_0, 1)), gen_Cons:Nil3_0(b)) →RΩ(1)
revapp(gen_Cons:Nil3_0(n5_0), Cons(hole_a2_0, gen_Cons:Nil3_0(b))) →IH
gen_Cons:Nil3_0(+(+(b, 1), c6_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)

Types:
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
revapp(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
revapp(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

(13) BOUNDS(n^1, INF)

(14) Obligation:

Innermost TRS:
Rules:
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
revapp(Nil, rest) → rest
goal(xs, ys) → revapp(xs, ys)

Types:
revapp :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
revapp(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
revapp(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)

(16) BOUNDS(n^1, INF)